This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* | 1 1 |n |Fn+1 Fn | | |
* | 1 0 | = |Fn Fn-1 | | |
* | |
* Figure 1 | |
*/ | |
public int FibonacciLogN(int n) | |
{ | |
if(n <= 0) | |
return 0; | |
if(n == 1 || n == 2) | |
return 1; | |
// calculate n - 1 term (see above figure 1) | |
return FibonacciMatrix(FIBONACCI_MATRIX, n - 1)[0][0]; | |
} | |
private int[][] FibonacciMatrix(int[][] m, int n) | |
{ | |
if(n == 1) | |
return FIBONACCI_MATRIX; | |
if(n == 2) | |
return multiply(FIBONACCI_MATRIX, FIBONACCI_MATRIX); | |
int solution[][] = FibonacciMatrix(m, n/2); | |
solution = multiply(solution, solution); | |
if(n%2 != 0) | |
solution = multiply(solution, FIBONACCI_MATRIX); | |
return solution; | |
} | |
// for quick multiplication | |
private int[][] multiply(int[][] m, int[][] n) | |
{ | |
int[][] result = new int[2][2]; | |
result[0][0] = m[0][0] * n[0][0] + m[0][1] * n[1][0]; | |
result[0][1] = m[0][0] * n[0][1] + m[0][1] * n[1][1]; | |
result[1][0] = m[1][0] * n[0][0] + m[1][1] * n[1][0]; | |
result[1][1] = m[1][0] * n[0][1] + m[1][1] * n[1][1]; | |
return result; | |
} | |
private int[][] FIBONACCI_MATRIX = new int[][] { {1,1}, {1,0} }; |